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Abstract

With the advances in computing and imaging technology, the field of precision agriculture is rapidly becoming a practical means for farm

management. An important step in the delivery of highly accurate images for farm managers is the within-image correction for viewing

geometry effects. Reflected light on an imaging sensor is influenced by properties of view zenith angle, solar zenith angle, and relative

azimuth. There are a number of models that describe this effect termed the bidirectional reflectance distribution function (BRDF) or more

generically ‘‘viewing geometry effects.’’ In this paper, we compared three BRDF models (Roujean, Shibayama–Wiegand, and Dymond–Qi)

with a fuzzy inference system (FIS) for three data sets for correction of geometric effects. One data set consisted of ground data collected at

different viewing angles of a cotton crop. Another data set included six aircraft images of a corn plot in a different part of each image. The

final data set was an aerial image of a planting density experiment of cotton. All the models performed reasonably well, but the FIS was the

most consistent predictor of BRDF for all three data sets. For the ground data set, R2 statistics for predicting the reflectance based on the

trained models ranged from 0.53 to 0.93 for the BRDF models and from 0.94 to 0.97 for the FIS.

D 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Remote sensing for precision agriculture is on the

verge of becoming an extremely valuable tool for the

farming industry. The combination of investments in

satellites dedicated specifically to acquisition of images

for the agriculture industry and advances in geographic

information science and computer technology will make

precision agriculture a common practice. Just as the

industrial age saw the mechanization of agriculture, the

information age will usher in spatially explicit, knowl-

edge-based agriculture.

This new agriculture will rely on accurate information

obtained from sophisticated instruments mounted on farm

machinery, airplanes, and satellites. In many cases, the

information from the air will be image-based; that is,
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agricultural professionals will obtain information about

their fields from a ‘‘picture’’ of their farm made of an

array of numbers, with each number corresponding to a

precise point (pixel) in the field. To produce an informa-

tion-rich map of a crop, the image needs to be corrected for

differences arising from the interaction of the illumination

source of the image and the pixel location within the image

due to the bidirectional nature of most agricultural fields. In

this paper, these differences are referred to as ‘‘viewing

geometry effects’’ because the effect is primarily related to

geometric configuration of the sensing system.

The need to correct for viewing geometry effects has been

recognized ever since remote sensing has been used for

scientific, quantitative purposes (Asrar & Myneni, 1992;

Deering, Eck, & Otterman, 1990; Kimes, Sellers, & Diner,

1987; Qi, Huete, Moran, Chehbouni, & Jackson, 1993). Only

in the past decade have the computing tools been available to

make the correction practical for large images. Many bidi-

rectional reflectance distribution function (BRDF) models

have been developed to correct for this effect (e.g., Strahler,

1997). Some of these models have been validated (Hu,



Table 1

Data acquisition sites

Sites Type of data Date of acquisition

Lubbock, TX ground data July 20 1998, 8:00 a.m.

aircraft data June 26 1998, 9:00 a.m.

Shafter, CA aircraft data May 27 1997, 11:00 a.m.
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Wanner, & Strahler, 1997) and are currently used to correct

images for geometric effects (Lucht, 2000; Roujean, Leory, &

Deschamps, 1992; Wanner, Li, & Strahler, 1995; Wanner et

al., 1997). Although these models are effective in correcting

images for viewing geometry effect and for understanding the

radiative transfer processes, simplified and more flexible

methods may be useful for operational corrections of this

effect.

Recent advances in neural network and artificial intelli-

gence may provide an alternative to traditional equation-

based BRDF models. For example, the neural fuzzy infer-

ence system (FIS), which uses a neural network to train an

FIS (fuzzy inference system), has been used in land-use and

land-cover classification of remotely sensed imagery and

proved to be more accurate than traditional unsupervised or

supervised classification techniques (Gopal, Woodcock, &

Strahler, 1999). Fuzzy inference systems (FIS) are not

constrained by the rules of traditional equations, are very

good at discerning complex patterns, and can be easily

modified with additional inputs. However, understanding

the physical processes being modeled is difficult compared

with BRDF models. Visualization tools are useful for

looking at the relationships between variables in an FIS,

which may provide some insights into the physical pro-

cesses. The main objective of this study was simply to test

whether an FIS can be used as an alternative for correcting

viewing geometry effects. A secondary objective is to test

the robustness of an FIS in comparison to traditional BRDF

models. A more detailed description of FIS is given in

Appendix A. This comparative analysis was made with one

set of ground-based data and two sets of aircraft-based data

as described below.
2. Study sites and data sets

Two study sites were used, one in Shafter, CA and one in

Lubbock, TX (Table 1). At the Texas site, two data sets were

collected: one set of ground-based measurements and one set

of aircraft-based measurements. Both study sites were the

locations of experiments conducted by Resource21, a Den-

ver-based remote sensing company.1 The site in Texas was

the location of an experiment investigating the influence of
1 The use of company names and brand names are necessary to report

factually on available data; however, the USDA neither guarantees nor

warrants the standard of the product, and the use of the name by USDA

implies no approval of the product to the exclusion of others that may also

be suitable.
water and nitrogen on the reflectance properties of agricul-

tural crops. The site in California was a study site for an

experiment in determining crop planting densities from

remotely sensed data.

Solar zenith angle is an important variable in BRDF

analysis. The influence of this variable was significant only

for our ground data in the Texas data set, where measure-

ments were taken over a period of 1 hour. For the Texas

aircraft data set, the change in solar zenith angle was minimal

because the six images used in the analysis were acquired

within 15 min of each other on the same day. The solar zenith

angle ranged from 35j to 38j for the six images so its effect

was considered negligible. The analysis of the California data

set consisted of just one image where the solar zenith angle

was constant. For both aircraft data sets, we treated the solar

zenith angle as a constant. For the Texas ground data, solar

zenith angle was included in the analysis, although the FIS

performed just as well when the solar zenith angle was held

constant.

For our ground-based study in Texas, we used a

12.19�12.19-m (40�40-ft) research plot (plot number

143 in Fig. 1) of cotton to measure the reflectance at

different viewing angles and solar azimuths. This was

done with an apparatus that allows the mounting of a

radiometer on the top of a boom for measuring surface

reflectances at different viewing angles (Jackson et al.,

1990). By turning around the base of the apparatus, we

were also able to make measurements at a range of solar

azimuth angles.

The radiometer used for this study was a four-band

Exotech sensor, with blue, green, red, and near-infrared

(NIR) filters corresponding to the first four spectral bands

of the Landsat TM sensors. The Exotech measured an area on
Fig. 1. Image of the study site in Lubbock, TX for both ground-based and

aircraft-based data. Plot numbers 143 and 413 are from original

experimental design.



R. Bryant et al. / Remote Sensing of Environment 88 (2003) 221–232 223
the ground approximately 1 m in diameter when the sensor is

viewing at nadir angle. At a 45j viewing angle, the footprint
will be an oval with a long axis of 2.8 m and a short axis of 1

m. This is different from the geometry of a view zenith angle

in an image since image pixels are rectangular. The viewing

geometry effects acquired from our ground data cannot be

directly translated to effects observed from aerial imagery

because our sensor device for data acquisition did not

precisely duplicate the viewing geometry for that environ-

ment The measurements were taken on July 20, 1998 from

8:00 to 9:00 a.m. local time. The cotton cover at the time of

measurements was approximately 50% (canopy was still

under development). Because of the row/furrow structure of

the cotton fields, at each scanning plane, three rows and three

furrows were measured (row spacing, 1.02 m or 40 in.). The

sensor was placed over a row first, and a scan reading was

taken. Then, the sensor was moved over a furrow, and the

reading was repeated. This was repeated three times. In the

post-processing, all data for each scanning plane were sepa-

rated by row and furrow and then sorted according to view

zenith angles. The measurements were binned at 5j intervals
and averaged. The average of all the rows and all the furrows

were averaged for each 5j bin for a final value for the viewing
angle at the center of the bin. This resulted in a set of

reflectance measurements from nadir to 70j at 5j intervals

and at five different relative azimuths, 0j, 45j, 90j, 135j,
and 180j. This was an attempt to acquire an average of the

view angle effect of the reflectance of a cotton canopy. It

should be emphasized that the row furrow structure of the
Fig. 2. Set of images used for Texas aircraft data analysis. C
cotton canopy greatly complicates view angle effects. The

average values we analyzed are not expected to be valid for

other row furrow structure of cotton.

The second data set from the Texas site was from aircraft

images. The Resource21 aircraft imager was flown over the

experimental site along several different flight directions to

collect data at different view zenith angles. The images were

acquired at approximately 305 m above ground level (AGL)

on June 26, 1998 with a 12-bit digital camera filtered to four

spectral bands. Band widths were 0.45–0.52, 0.52–0.60,

0.63 – 0.68, and 0.775 – 0.90 Am. Ground resolution

was approximately 0.52 m, and the image consisted of

1025�1025 pixels with a field of view of 28.6j. This

resolution was not ideal for analyzing view angle effects

because geometric effects are best analyzed when image

resolution is much larger (10 times or more) than the

structures in the image since geometric effects are tradition-

ally considered mixed pixel effects of object and shadow. We

did not degrade the image resolution because it would have

reduced the number of pixels available for data analysis for

one plot. Our results are presented as an average of the entire

plot. We chose to analyze one 12.19�12.19-m plot (plot 413,

Fig. 1) because it occurred at the center of one of the images

corresponding to a nadir view angle. This particular plot was

captured in five other images at different locations in the

image giving us a total of six images for analysis. In this

study, we analyzed the near-infrared band (NIR) of six

images of the experimental plot number 413 (Fig. 2). Twenty

values from each image of plot 413 were randomly extracted,
ircles indicate locations of study site in each image.
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totaling about 5% of the total number of pixels in the plot. The

values extracted were unprocessed digital numbers. Since all

images were acquired within 15 minute and no changes were

made to the controls of the camera, post-processing was not

necessary for the investigation of relative viewing geometry

effects. In addition, the low altitude of image acquisition as

well as the constant clear atmosphere at the time of acquisi-

tion allowed us to neglect confounding atmospheric effects.

The second study site was in Shafter, CA at the USDA

Cotton Research station. The field was split up into 16

equal plots (12�90 m) for a plant density experiment. The

plots were designed in a 4�4 randomized block (Fig. 3).

Treatment plant densities were 10, 20, 30, and 50 thousands

of plants/acre. The plots were planted with Acala (MAXXA)

cotton on April 18, 1997 and emergence occurred on

April 24, 1997.

An aircraft was flown at 305 m AGL on May 27, 1997 to

acquire the image used for the Shafter study. The sensor was

the same as that used at the Texas study site, with a resolution

of 0.5 m.

The Shafter data set was analyzed to see if the viewing

geometry would influence the interpretation of planting

densities of newly emerged cotton in a relatively small area

of an entire aircraft image. First, we examined the original

image to establish whether viewing geometry effects were
Fig. 3. Image of the plant density study of cotton in Shafter, CA. Numbers

refer to thousands of plants per acre planted. The image was acquired on

May 27, 1997, shortly after emergence.
significant. Since the replicates were randomized, no plots of

the same planting density were adjacent to each other. The

planting densities and crop conditions were precisely con-

trolled and monitored so it could be assumed that each

repetition would have a very similar average digital number

(DN) value in the near-infrared band image, which is very

sensitive to the presence of green vegetation. If the DN

values for each replicate had a relationship to the plot

location, then most likely, this relationship would be the

result of viewing geometry effects.
3. Methodology: model and FIS descriptions

Earlier research showed that equation-based BRDF mod-

els were able to predict values from data acquired on the

ground with reasonable accuracy using only viewing zenith

and view azimuth angles as inputs (Cabot, Qi, & Moran,

1994; Lucht & Roujean, 2000; Strahler, 1997). This study

investigated whether a simple FIS would work as well or

better than the traditional BRDF models. To do this, we

selected three BRDF models, one from each of the physical,

semiempirical, and empirical categories. Equation-based

models simulate BRDF properties reasonably well for a

homogeneous surface. Previous research (Cabot et al.,

1994; Dymond & Qi, 1997; Lucht & Roujean, 2000) has

shown that the Shibayama and Wiegand (1985, empirical),

Roujean et al. (1992, physical), and Dymond and Qi (1997,

semiempirical) models suitably describe a BRDF function for

agricultural crops when used with appropriate coefficients

(see Appendix A for descriptions). We chose these three

BRDF models and developed one fuzzy inference system

(FIS) model for comparison with the ground data. The

mathematical expressions of these three models are provided

in Appendix A.

The fuzzy inference system (FIS) used in this study is a set

of rule-based logics. An FIS takes input variables and, instead

of developing an equation, creates membership functions for

each variable. Rules are then created that evaluate the

membership functions to result in a single output value.

When an FIS is optimized or trained, the rule andmembership

functions are adjusted to best fit the training data set.

Appendix B provides a brief description and example of the

development of rules and membership functions.
4. Methodology: ground-based data

The BRDF models were first run in an inverse mode to

optimize the model parameters. The optimization routine

used to train the equation-based BRDF models was the

simplex procedure (Nelder & Mead, 1965). The FIS was

developed and trained at the same time using an adaptive

neuro-fuzzy inference system (ANFIS). Once the models

(both BRDF and FIS) were optimized, they were used to

simulate the spectral reflectances. The simulated reflectances
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were then compared with ground data using graphic presen-

tation and statistical measures.
5. Methodology: aircraft-based data

The successful prediction of values with the BRDF

models and an FIS ideally requires a complete data set of

view zenith angles, a uniformly distributed set of relative

azimuth angles, and measurements of the same area on the

ground for training of the FIS and BRDF models. Aircraft-

based images are rarely suitable for this kind of analysis

because, in many cases, the area of interest is only a part of

the image and therefore has a limited range of viewing

angles. Even if the entire image is of interest, different parts

of the image would most likely contain different objects

with very different view zenith angle properties, which

would require that the image be split up into subsections

for correction of viewing geometry effects. In a case like

this, both the equation-based BRDF models and the FIS

would predict an overall average BRDF for the image.

In most aircraft images, there is a tremendous variability in

pixel values unrelated to viewing geometry effects. The 120

randomly extracted values (20 values from each image) from

the Texas images were plotted (grouped by image) in the

order in which they were extracted (Fig. 4). Two sources of

variability were apparent: (1) variability between each pixel

value and (2) an overall variability between images which is

the variability due to differences in view zenith angle and

relative azimuth of the plot. This was assumed because the

only difference between the six images of the same plot was

viewing geometry. If the BRDFmodels were to predict values

based only on geometric inputs (i.e., view zenith angle and
Fig. 4. Randomly selected data values from Texas aircraft images. Image numbers

view zenith angle, and ara=average relative azimuth.
relative azimuth), then the heterogeneity due to other factors

(i.e., differences in LAI, soils, etc.) would not be included in

the model prediction, making the predicted values less

accurate. In BRDF models, this is considered noise because

the models are not designed or expected to predict this

variability (Lucht, 2000). This is true for an FIS as well,

which explains the poor fit between values predicted by the

FIS and the values used to train the FIS (Fig. 5). The variation

within the predicted values (Fig. 5) was caused by viewing

geometry. The FIS model created a best fit based on the input

values by averaging variation of the data set due to other

factors. The only inputs were viewing geometry inputs, so the

FIS did not have access to other sources of variation;

therefore, they were ignored by the FIS. If the model

predicted the values exactly, then all of the variation in the

data set would be due to viewing geometry effects, which we

know is not the case. The equation-based models do essen-

tially the same thing. The primary difference is that the fit is

constrained to a certain extent by the equation where the

ANFIS seeks a pattern that fits the input parameters, in this

case, the viewing geometry. We illustrate this effect in the

results section of the ground data.

To correct for viewing geometry effects in this image,

only the variation in the predicted value from the model

needs to be removed from the original value. With equation-

based BRDF models, this is accomplished by predicting a

value with the equation set to some standard geometry,

(usually, view zenith angle equals zero and solar zenith

angle equal to that of the time of image acquisition), making

a second prediction of the pixel value at the actual viewing

geometry and then calculating the ratio of these two values.

This result is a correction coefficient that is multiplied by the

original value to correct for the BRDF effect.
correspond to image numbers in Fig. 3, where: adn=average dn, av=average



Fig. 5. Randomly selected data values from Texas aircraft images (circles). Values predicted by an FIS after being trained with measured values shown

(asterisks).
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Since the FIS is not equation based, it can only predict

geometric effects within the bounds of the data that was

used to train the FIS. In order to correct for geometric

effects in the manner described above, the training data

must include values at or close to a view zenith angle of

zero. The lowest view zenith angle in the Texas aircraft
Fig. 6. Comparison of different models in the principal plane (band
data set was 0.12j, which is the value we used with the FIS

to correct for viewing geometry effects. Unfortunately,

because we were only using a part of an image for the

California aircraft data, our lowest view zenith angle was

2.1j. For demonstration purposes, we simply calculated the

ratio of the lowest value predicted by the FIS to the value
4) for prediction of reflectance from Texas ground-based data.



Fig. 7. Comparison of different models for prediction of reflectance from Texas ground-based data.
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predicted for the viewing geometry of the image for the

correction coefficient. This corrected for relative differences

due to geometric effects but not for absolute differences.
6. Results

Because the three data sets used in this study had very

different characteristics and the methodology used for the

ground-based data varied somewhat from that of the air-
Table 2

Statistical merit of regression and root mean square error (RMSE), actual vs. pre

Model R2 (band 3) RMSE (

Shibayama–Wiegand 0.530 0.0054

Roujean 0.681 0.0049

Dymond–Qi 0.643 0.0051

FIS 0.937 0.0026
craft-based data, the results are presented separately for each

data set.

6.1. Results A: Texas ground data

After all the models were optimized, ground-measured

data in the principal plane (relative azimuth 0j and 180j)
were compared to the predicted data for all four models in

band 4 (Fig. 6). The principal plane was chosen because

viewing geometry effects are greatest in this relative azi-
dicted reflectance for spectral bands 3 and 4

band 3) R2 (band 4) RMSE (band 4)

0.934 0.0317

0.779 0.0451

0.664 0.0539

0.965 0.0234



Fig. 8. Average reflectance values of randomly selected data points for the

Texas aircraft images before and after correction for viewing geometry

effects. Image numbers correspond to image numbers in Figs. 2 and 4.

Table 4

Standard deviation for all six images after correcting for viewing geometry

effects

Model Dymond–Qi Roujean Shibayama–Wiegand FIS

Standard deviation 1.5 1.0 0.3 0.3
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muth plane. Fig. 6 illustrates the advantage of using a model

to predict viewing geometry effects that is essentially an

empirical ‘‘pattern finder.’’ The FIS model was able mimic a

viewing geometry effect extremely well. The Shibayama–

Wiegand model fit the ground data best out of the equation-

based models. The Roujean and Dymond models exhibited

very similar results. Secondly, the ground-measured data

were plotted against the data predicted by each model (Fig.

7). Regression equations, the statistical R2, and root mean

square error (RMSE) were also calculated (Table 2). The

RMSE between band 3 and band 4 varied by an order of

magnitude because of the difference in the range of reflec-

tances in the bands (0.03–0.07 for band 3 and 0.28–0.78

for band 4). Therefore, the following discussion is limited to

the R2 statistic.

The models’ performance varied significantly with R2

values ranging from 0.53 to 0.96. The Shibayama–Wiegand

model was able to predict the near-infrared (band 4) much

better than the red (band 3) (R2=0.93 versus R2=0.53). The

Roujean and Dymond–Qi models performed better for band

4 (R2=0.78) than band 3 (R2=0.66). The FIS performed the

best for both bands with an R2=0.94 and 0.97 for bands 3

and 4, respectively. For this data set, it is apparent that the

FIS is a better model for predicting reflectance based on

relative azimuth and view zenith angles. This is because the
Table 3

Average values for 20 randomly extracted pixels from each image

Model Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

Uncorrected 70.5 70.5 65.6 65.7 72.6 69.7

Dymond–Qi 68.0 70.4 66.1 67.9 67.6 69.6

Roujean 72.2 70.5 68.8 70.1 70.7 70.3

Shibayama–Wiegand 70.6 70.4 70.2 70.8 70.6 71.0

FIS 70.0 70.0 70.4 69.9 70.4 70.8
FIS model is basically a curve-fitting algorithm with almost

no functional restrictions, while the BRDF models are based

on fixed forms (equations). The membership functions and

flexible function coefficients made the FIS more flexible to

fit the BRDF properties (shapes) of heterogeneous surfaces

like ours.

6.2. Results B: Texas aircraft data

Recall that the Texas aircraft data and the California

aircraft data were not processed beyond the digital number

before being corrected for geometric effects. The Texas data

was analyzed by plotting the average of the 120 values from

each of the six images sequentially before and after viewing

geometry correction (Fig. 8; Tables 3 and 4). The Shi-

bayama–Wiegand model and the FIS were very effective in

removing variation that was caused by different viewing

geometries as evidenced by the constant average value for

all the images after the correction was made. The Dymond–

Qi and the Roujean models reduced the viewing geometry

effect but not completely.

6.3. Results C: California aircraft data

Data from the California study site exhibit a relationship

between the viewing geometry and the DN value for each

planting density (Fig. 9). As relative azimuth and viewing

angle decreased, the DN values increased. This suggests that

the relative azimuth effects overwhelmed the view zenith

angle effects since the view zenith angles did not vary

significantly. The trends in DN in relation to viewing

geometry were not tested for statistical significance.
Fig. 9. DN values of band 4 of the Shafter study site before correcting for

viewing geometry effects, separated by treatment density.



Fig. 10. DN values of band 4 of the Shafter study site after correcting for viewing geometry effects, separated by treatment density. The legend designations of

10k, 20k, 30k, and 50k are plant treatment densities (thousands of plants/acre).
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After obtaining correction coefficients from each

BRDF model and the FIS, we corrected the entire image

(Fig. 10). The spatially dependent trend of the DN values

for each plant density was removed, yet the different

densities were still separable, demonstrating that the value

of the DN due to plant density had been preserved, but

the difference in DN values due to viewing geometry had

been removed. The Roujean and the Shibayama–Wie-

gand models removed viewing geometry effects equally

well as demonstrated by similar slope values of the trend

lines for all the planting densities (Table 5). Results for

the FIS model exhibited a slightly greater downward

trend for the low plant densities and a slightly upward

trend for the highest plant density. The Dymond–Qi

model shows a significantly greater upward trend, which

was the trend of the original data (Fig. 9) from the
Table 5

Slope of trend line for different planting densities of experimental plot after

correcting for viewing geometry effects

Planting density (�103)Dymond–QiRoujeanShibayama–WiegandFIS

10 plants/acre 0.439 �0.064 �0.060 �0.064

20 plants/acre 0.251 �0.060 �0.060 �0.060

30 plants/acre 0.254 �0.054 �0.055 �0.053

50 plants/acre 0.375 0.050 0.052 0.050
uncorrected image. Note that this analysis assumed that

the average values of the plots of the same densities were

equal. If the plots with higher numbers were actually less

dense, due to soil conditions, for example, then the FIS

would have made the best correction. Similarly, if for

some reason the higher numbered plots were actually

denser than the lower numbered plots, then the

Dymond–Qi model would have made the best correction.

Unfortunately, ground-based data were not available for

comparison with the image data to confirm this. The

plant densities varied by experimental design in the

image analyzed; the image was acquired only 4 weeks

after plant emergence so the range of DNs in the image

is narrow (33–48). If the image had included plots with

full cover, the models tested may have behaved differ-

ently. We did not perform a statistical analysis on the

separatability of the different plant densities, but before

correction, the obvious spatial correlation between differ-

ent plots of the same density was removed.
7. Concluding remarks

For the data sets examined in the study, the FIS per-

formed as well or better than the equation-based BRDF

models. Most traditional BRDF models are based on
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extensive research and validation. Therefore, they are a

useful tool for studying the geometric effect on radiative

transfer processes. In addition, the possibility of the equa-

tion-based BRDF models yielding unreasonable results is

minimal. On the other hand, an FIS is simply fitting to a

pattern based on given inputs. This raises the possibility of

an FIS model that fits the data training set extremely well

but makes little physical sense. The likelihood of this is low

because, given only viewing geometry inputs, the chances

of other factors actually having a relationship to viewing

geometry data is very small. If there were no relationship to

viewing geometry inputs and pixel value, the FIS would

simply fail to create a pattern. Additionally, because FIS is

not constrained to correcting only for viewing geometry

effects, the possibility exists that effects from the atmo-

sphere and inherent sensor and experimental error are also

being corrected by the FIS. Should these effects be corre-

lated with the geometric variables that were input to the

FIS, this would indeed be the case. We are not implying that

the FIS is a valid or appropriate replacement for rigorous,

physically based BRDF models. We have shown that an FIS

is very effective at finding patterns based on inputs that are

known to have a complex but ultimately predictable effect

on the data. This research is highly experimental. The

practical usefulness of FIS for correcting geometric effects

remains a topic of future research. Further research might

include extending an FIS or adding other mathematical

models to extrapolate from the given training data, exten-

sive testing on different data sets to evaluate the usefulness

of an FIS that is not site or image specific, investigating the

correlation of geometric effects with other biophysical

effects by inputting additional variables to the FIS, and

additional comparisons of FIS to proven, physically based,

BRDF models.

The advantage of fuzzy inference systems is that they

provide greater flexibility than traditional equation-based

BRDF models for describing observed BRDF patterns with

many dependent variables in terms of finding a pattern to

given inputs. In addition, unlike neural networks, the

mathematical components that make up an FIS are easily

accessible. This allows a user to analyze the system to insure

that the relationships described in the FIS do not contradict

already established relationships. In addition, an FIS can

easily be extended with additional inputs and membership

functions to account for more complex data sets or patterns.

Although we used the Matlab FIS toolbox (Matlab, 1998),

FIS is not a proprietary algorithm and could be built with

any programming language. We hope this paper will en-

courage more researchers in the natural sciences to investi-

gate this useful tool.
Fig. A1. Example of a Gaussian membership function for a range of view

zenith angles.
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Appendix A. Brief description of fuzzy inference systems

The reader is referred to Jang, Sun, and Mizutani (1996)

for a complete discussion of fuzzy and neuro-fuzzy theory.

In this section, a few terms are defined to explain our

approach. Instead of equations with coefficients that are

optimized, an FIS has rules associated with the independent

variables and membership functions that define how the

rules act on the data. It is the membership functions that are

optimized. Membership functions usually have a mathemat-

ically defined shape with parameters that can be adjusted to

change the shape. For example, a Gaussian membership

function has the shape

y ¼ e
�ðx�cÞ2

2r2 ; ðA1Þ

where c and r are the parameters that adjust the shape of the

function. The x-axis of a membership function is the range

of an independent variable for the FIS. In this study, one

independent variable was view angle which ranged from 7j
to 12j in the California data set. The y-axis always ranges

from 0 to 1 and defines how well an x value fits a particular

membership function. A view angle of 7j would have a

membership function value of 0.19 for the Gaussian mem-

bership function in Fig. A1. In this particular example, c=5

and r=0.01.
The user developing the FIS chooses the number of

membership functions for each independent variable. For

this FIS, two membership functions were chosen for each

variable because adding additional membership functions

did not improve the accuracy of the FIS. Each function has a

generalized bell shape as described below.

y ¼ 1

1þ x� c

a

��� ���2b
ðA2Þ

Parameters a, b, and c are adjusted by the adaptive neuro-

fuzzy interface system (ANFIS) to fit the output data.
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For the California data set, the two independent varia-

bles trained against the data were relative azimuth and view

angles. Since we were correcting just one image, the solar

zenith angle remained constant but could be used as

another variable when analyzing multiple images with

different solar zenith angles.

Every independent variable in the FIS has its own set of

membership functions. In this model, two membership

functions were chosen for view angle and relative azimuth

and labeled low and high view angle and low and high

relative azimuth. The membership functions are commonly

given descriptive names for clarity (i.e., high, low). Fig. A2

illustrates these functions. For a pixel with a relative

azimuth of 100j and a view angle of 6, the membership

function values are as follows:

value for relative azimuth membership function: low=

0.3

value for relative azimuth membership function: high=

0.7

value for view angle membership low= 0.65

value for view angle membership function: high= 0.35.

These values represent the degree to which the indepen-

dent variable is a member of the membership functions.

The second part of an FIS is a set of ‘‘if, then’’ rules that

essentially define the ‘endmember’ of an input value (inde-

pendent variable), that is when the when a particular

membership function value equals 1. The value of the

predicted variable for each ‘endmember’ is determined

through the ANFIS. In other words, it is part of the

optimization procedure.
Fig. A2. Example of membership functions for input values ‘‘view zenith

angle’’ and ‘‘relative azimuth.’’
1. If view angle is low and relative azimuth is low, then

predicted DN is 36.6

2. If view angle is low and relative azimuth is high, then

predicted DN is 40.5

3. If view angle is high and relative azimuth is low, then

predicted DN is 42.8

4. If view angle is high and relative azimuth is high, then

predicted DN is 42.7.

The values in the ‘‘if, then’’ rules are combined with the

membership values to get one predicted value for each input

value (independent variable) For this particular model,

application of the ‘‘and’’ rule requires that the values

obtained from each membership function in the rule be

multiplied to get one membership value for each rule. Then,

the sum of the predicted values is calculated to derive a

single output value for a set of inputs (dependent variables)

(Eq. (A3)). The values from our example yield

predicted value ¼ ð0:3� :65� 36:6Þþð0:65� 0:7� 40:5Þ
þ ð0:3� 0:35� 42:8Þ
þ ð0:7� 0:3� 42:7Þ ðA3Þ

predicted value ¼ 40:52:

This is the Sugeno type of FIS. Another type of FIS is the

Mamdani, where the output values are actually membership

functions that are then converted into a single output number.

As with traditional models, an FIS needs to be trained

with a data set from the image to be corrected. It is not

possible to train an FIS with traditional optimization meth-

ods, so we used an adaptive neuro-fuzzy inference system

(ANFIS) developed by Jang et al. (1996). An ANFIS is

given a set of variables upon which the output data set is

dependent. Membership functions are created for each

variable, and the functions are trained to best fit the output

data. It is the ANFIS that performs the iterative process that

adjusts the membership function parameters using a com-

bination of a back-propagation algorithm and the least

squares method.
Appendix B. BRDF models used

(1) Shibayama–Wiegand (1985) model

qðhs; hv;uÞ

¼ R0 1þ b0 þ b1sin
u
2

� �
þ b2

coshs

� �
sinhv

� �
ðA4Þ

where q=reflectance factor; hs=solar zenith angle; hv=view
angle; u=relative azimuth; R0=nadir reflectance factor; b0,
b1, b2=empirical parameters.
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(2) Dymond–Qi (1997) model

L ¼ Sðh;/ÞHða;/ÞBðaÞ ðA5Þ

where

Sðh;/Þ ¼ cosh
cosh þ ðrh=r/Þcos/

ðA6Þ

Hða; hÞ ¼
2expð�tanða=2Þ=hhÞ a < p=2

2expð�tanðp=4Þ=hhÞ azp=2

8<
: ðA7Þ

BðaÞ ¼ 4qE
3p2

ðsina þ ðp=2� aÞcosaÞ ðA8Þ

h=sun zenith angle; /=off-nadir view angle; a=phaseangle;
rh=average projected leaf area in the sun direction;

r/=average projected leaf area in the view direction;

h=constant which is proportional to the length divided by

the distance between leaves; q=leaf reflectance; E=radiant
flux density of the sunlight; L=canopy radiance.

(3) Roujean (1992) model

qðhs; hv;uÞ ¼ k0 þ k1f1ðhs; hv;uÞ þ k2 f2ðhs; hv;uÞ ðA9Þ

f1ðhs; hv;uÞ ¼
1

2p
ððp � uÞcosu þ sinuÞtanhstanhv

� tanhs þ tanhv þ G

p
ðA10Þ

f2ðhs; hv;uÞ ¼
4

3p
1

coshs þ coshv

� p
2
� n

� �
cosn þ sinn

� �
� 1

3
ðA11Þ

cosn ¼ coshscoshv þ sinhssinhvcosu ðA12Þ

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2hs þ tan2hv � 2tanhstanhvcosu

p
ðA13Þ

where q=surface reflectance; hs=solar zenith angle; hv=view
angle; Ur=relative azimuth; q0=surface background reflec-

tance; f1, f2=analytic functions of the solar zenith angle and

view angle; h=average height of surface protrusions; l=av-

erage spacing of surface protrusions; x=single leaf scatter-

ing albedo; s=optical depth of the foliage of the canopy.
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